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Abstract

Spring–mass systems are frequently used as vibration absorbers to minimize excess vibration in structural
systems. In this paper, sprung masses are used to impose the points of zero vibration for general elastic
structures during forced harmonic excitations. For convenience, such points are referred to as nodes. When
the oscillator attachment locations and the node locations coincide (or are collocated), it is always possible
to select the spring–mass parameters such that multiple nodes are induced at any desired locations along the
structure for any excitation frequency. When the oscillators and the node locations are not collocated,
however, it is only possible to induce nodes at certain locations along the elastic structure for a given
driving frequency. Moreover, when the desired node locations are closely spaced, it is possible to specify a
region of nearly zero amplitudes for a particular driving frequency, effectively quenching vibration in that
region. A procedure to guide the proper selection of the spring–mass parameters in order to induce multiple
nodes is outlined in detail, and numerical experiments are performed to verify the utility of the proposed
scheme of imposing nodes at multiple locations during harmonic excitations.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Using vibration absorbers to eliminate excess vibration has been studied by many different
authors over the years, and hence only a few selected references are given here. Jacquot [1]
developed a technique to give the optimal dynamic vibration absorber parameters for the
elimination of undesirable vibration in sinusoidally forced Euler–Bernoulli beams. However, he
employed only a single mode expansion for the beam in an assumed-modes approach, which
severely limits the applicability of his formulation. .Ozg .uven and -Candir [2] presented a general
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method for determining the optimum parameters of dynamic vibration absorbers attached to a
beam to suppress any two resonances. The assumed-modes method was employed to calculate the
response of the system to a concentrated harmonic excitation, and the optimization was
performed to minimize the maximum response in the mode of interest. Manikanahally and
Crocker [3] formulated a procedure that can be used to suppress any number of significant modes
using vibration absorbers. For each absorber with a selected mass, the stiffness and damping
parameters were optimized so as to minimize the dynamic response corresponding to the
resonance frequency at which they are tuned to operate. The approach was successfully applied to
a space structure modelled as a mass-loaded free–free beam when it is subjected to a single
localized harmonic excitation. Keltie and Cheng [4] investigated the effects of point masses on the
structural response of a finite beam. They developed an approach that can be used to determine
the mass locations required to reduce the vibration level at any arbitrary location on a structure.
In their optimization techniques, they considered only the mass locations as the design
parameters. In a recent paper, Alsaif and Foda [5] proposed a method based on the dynamic
Green function to determine the optimum values of masses and/or springs and their locations on a
beam in order to confine the vibration at an arbitrary location. The masses are rigidly attached to
the beam, and the springs are grounded at one end. While the method they used is exact, direct
and elegant, it can only be applied when the Green function for the system can be derived.
Cha and Pierre [6] used a chain of oscillators as a means to passively impose a single node for

the normal modes of any arbitrarily supported elastic structure. The desired node can either
coincide with the oscillator chain or it can be located elsewhere. A procedure to guide the
proper selection of the oscillator chain parameters for the purpose of inducing a single node for
multiple normal modes was outlined in detail. In Ref. [7], the present author developed an
approach that used a series of sprung masses to induce multiple nodes for any normal mode of an
arbitrarily supported, linear elastic structure. By selecting the appropriate sprung masses, their
attachment locations can be made to coincide exactly with the nodes of the structure, thereby
allowing the locations of the nodes to be specified anywhere along the structure and for any
normal mode.
The focus of Refs. [6,7] was on imposing nodes for the normal modes of an elastic structure. In

this paper, elastically mounted masses are used to induce a single or multiple nodes anywhere
along an elastic structure that is harmonically excited with a localized force. This is beneficial
because it would allow sensitive instruments to be placed near or at nodes where there are little or
no vibration. In addition, the proposed scheme allows certain points along the structure to remain
stationary without using any rigid supports.

2. Theory

2.1. Governing equations

Consider an arbitrarily supported elastic structure to which S-sprung masses are attached as
shown in Fig. 1. A localized harmonic force

f ðtÞ ¼ Fe jot ð1Þ
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is applied to the structure at xf ; where F represents the forcing amplitude, o denotes the driving
or excitation frequency, and j ¼

ffiffiffiffiffiffiffi
�1

p
: Using the assumed-modes method, the physical deflection

of the structure at any point x is given by

wðx; tÞ ¼
XN

i¼1

fiðxÞZiðtÞ; ð2Þ

where the fiðxÞ are the eigenfunctions of the linear structure (the elastic structure without
any sprung masses) that form the basis functions for this approximate solution, the ZiðtÞ
are the corresponding generalized co-ordinates, and N is the number of modes used in
the assumed-modes expansion. The total kinetic and potential energies of the combined
system, defined as the elastic structure carrying the elastically mounted masses, are
given by

T ¼
1

2

XN

i¼1

Mi ’Z2i ðtÞ þ
1

2

XS

i¼1

mi ’z
2
i ðtÞ ð3Þ

and

V ¼
1

2

XN

i¼1

KiZ2i ðtÞ þ
1

2

XS

i¼1

ki½ziðtÞ � wðxi
a; tÞ�

2; ð4Þ

where the Mi and Ki are the generalized masses and stiffnesses of the elastic structure, mi and ki

are the mass and spring stiffness of the ith oscillator, ziðtÞ is its displacement, S is the total number
of sprung masses attached to the elastic structure, an overdot denotes a derivative with respect to
time, xi

a represents the attachment location of the ith oscillator, and wðxi
a; tÞ represents the lateral

displacement of the beam at xi
a: Finally, the generalized force associated with the generalized

co-ordinate ZiðtÞ is

FiðtÞ ¼ f ðtÞfiðxf Þ: ð5Þ
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Fig. 1. An arbitrarily supported elastic structure that is subjected to a localized harmonic excitation and carrying any

number of sprung masses.
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Applying Lagrange’s equations and assuming simple harmonic motion with the same response
frequency as the driving frequency,

ZiðtÞ ¼ %Zie
jot; ziðtÞ ¼ %zie

jot; ð6Þ

the generalized co-ordinates %Z and the mass amplitudes %z for the system of Fig. 1 correspond to
the solution of the matrix equation

½K� � o2½M� ½R�

½R�T ½k� � o2½m�

" #
%Z

%z

" #
¼

F
%
fðxf Þ

%
0

" #
; ð7Þ

where %Z ¼ ½%Z1 %Z2 y %ZN �T; %z ¼ ½%z1 %z2 y %zS�T; and the S � S matrices ½m� and ½k� are both
diagonal, whose ith elements are given by mi and ki; respectively. The N � N ½M� and ½K�
matrices of Eq. (7) are

½M� ¼ ½Md �; ½K� ¼ ½Kd � þ
XS

i¼1

ki
%
fðxi

aÞ
%
fTðxi

aÞ; ð8Þ

where ½Md � and ½Kd � are diagonal matrices whose ith elements are Mi and Ki; vectors
%
fðxi

aÞ
and

%
fðxf Þ consist of the eigenfunctions of the elastic structure evaluated at xi

a and xf ;
respectively,

%
fðxi

aÞ ¼ ½f1ðx
i
aÞ f2ðx

i
aÞ y fNðx

i
aÞ�

T;

%
fðxf Þ ¼ ½f1ðxf Þ f2ðxf Þ y fNðxf Þ�T; ð9Þ

and the N � S matrix ½R� is given by

½R� ¼ ½�k1
%
fðx1

aÞ y � ki
%
fðxi

aÞ y � kS
%
fðxS

a Þ�: ð10Þ

Note that ½M� is a diagonal matrix and ½K� is a diagonal matrix modified by S rank one matrices.
To induce nodes at any desired locations, xr

n; along the elastic structure requires that

wðxr
n; tÞ ¼

XN

i¼1

fiðx
r
nÞZiðtÞ ¼

%
fT ðxr

nÞ
%
Z ¼

%
fTðxr

nÞ%Ze
jot ¼ 0; r ¼ 1;y;S: ð11Þ

Once the elastic structure and its boundary conditions are specified, the attachment locations xi
a

are given, and the excitation frequency o and the excitation location xf are known, Eqs. (7) and
(11) can be used together to solve for the required oscillator parameters, the mi and the ki; in order
to impose nodes at xr

n:

2.2. Oscillators and node locations are collocated

Consider the case where the attachment and the node locations coincide. For this case, the
oscillators and the nodes are said to be collocated. From Eq. (7), note that if

kr ¼ mro2; r ¼ 1;y;S; ð12Þ

then

½R�T %Z ¼
%
0: ð13Þ
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Because the oscillators and the node locations are collocated, xr
a ¼ xr

n; in which case the rth row of
Eq. (13) yields

�kr
%
fTðxr

aÞ%Z ¼ �kr
%
fTðxr

nÞ%Z ¼ 0; r ¼ 1;y;S; ð14Þ

which clearly satisfies Eq. (11). For a given excitation frequency, as long as the oscillator
parameters satisfy Eq. (12), nodes will be induced at the attachment locations. Finally, the
selection of the sprung masses is not unique. The actual choice is governed by the tolerable
vibration amplitudes of the oscillator masses.

2.3. Oscillators and node locations are not collocated

Consider an elastic structure subjected to a localized harmonic input. For a certain application,
a node or multiple nodes are desired along the elastic structure for a given excitation frequency.
However, due to various physical constraints, oscillators cannot be attached at the desired node
locations, but instead at some other points. For this case, the attachment and the node locations
are said to be not collocated. When the attachment and the node locations are not collocated,
Eq. (7), of size ðN þ SÞ � ðN þ SÞ; can be reduced by simple algebraic manipulation. Using
Eq. (7), the %zi are found to be

%zi ¼
ki
%
fTðxi

aÞ
ki � o2mi

%Z; i ¼ 1;y;S: ð15Þ

Substituting the expressions of Eq. (15) into Eq. (7), the following matrix equation, of size N � N;
is obtained:

½Kd � þ
XS

i¼1

si
%
fðxi

aÞ
%
fTðxi

aÞ � o2½Md �

( )
%Z ¼ F

%
fðxf Þ; ð16Þ

where

si ¼
kimio2

mio2 � ki

: ð17Þ

Incidentally, once the mi; ki and xi
a have been selected, the natural frequencies of the modified

structure may be found from the zeros of the characteristic determinant of the coefficient matrix
of %Z of Eq. (16). Assuming that the excitation frequency does not coincide with any natural
frequencies of the modified system, the coefficient matrix of Eq. (16) can be inverted to give

%Z ¼ ½Kd � þ
XS

i¼1

si
%
fðxi

aÞ
%
fTðxi

aÞ � o2½Md �

( )�1

F
%
fðxf Þ; ð18Þ

which allows Eq. (11), the constraint equations that dictate the location of nodes, to be
rewritten as

%
fTðxr

nÞ ½Kd � þ
XS

i¼1

si
%
fðxi

aÞ
%
fTðxi

aÞ � o2½Md �

( )�1

F
%
fðxf Þ ¼ 0; r ¼ 1;y;S: ð19Þ
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Eq. (19) can be used to solve for the required sprung masses in order to induce a single or multiple
nodes at xr

n:

2.3.1. One oscillator and one node
When only one node location at xn is specified, and it is not collocated with the attachment

location at xa; the desired spring–mass parameters can be readily obtained. For S ¼ 1; Eq. (19)
simplifies to

%
fTðxnÞ ½Kd � þ

kmo2

mo2 � k %
fðxaÞ

%
fTðxaÞ � o2½Md �

� 	�1

F
%
fðxf Þ ¼ 0: ð20Þ

Because the second term of Eq. (20) consists of a matrix modified by a rank one matrix, its inverse
can be readily obtained by applying the Sherman–Morrison formula [8]. Assuming the excitation
frequency o; the oscillator stiffness parameter k; the attachment location xa; the node location xn;
and the excitation location xf are all specified, a closed-form expression for the required oscillator
mass m in order to impose a node at xf can be readily obtained as follows (see Appendix A for
detailed derivations):

m ¼
c1k

o2ðc1 þ c1c3k � c2kÞ
; ð21Þ

where

c1 ¼
XN

i¼1

fiðxnÞfiðxf Þ
Ki � Mio2

; ð22Þ

c2 ¼
XN

i¼1

XN

j¼1

fiðxaÞfjðxaÞfiðxnÞfjðxf Þ

ðKi � Mio2ÞðKj � Mjo2Þ
ð23Þ

and

c3 ¼
XN

i¼1

f2
i ðxaÞ

Ki � Mio2
: ð24Þ

It should be noted that unlike the collocated case where a node can always be induced anywhere
along the structure for any excitation frequency, when the oscillator and the node locations are
not collocated, it is only possible to impose a node at certain points along the structure.
Mathematically, if Eq. (21) returns a mass value that is negative, this implies that a node cannot
be enforced at the desired location for the given set of o; k; xa and xf : In this case, one can change
either the oscillator stiffness, k; or the attachment location, xa; to obtain a physically meaningful,
i.e., positive, value of m so that a node at xn can be induced for the given xf and o:

2.3.2. Multiple oscillators and multiple nodes
Now consider the case of multiple oscillators and nodes. When the attachment locations and

the node locations are not collocated, the solution scheme becomes more complicated and
computational intensive. Nevertheless, the procedure to determine the required spring–mass
parameters is still rather straightforward conceptually.
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For multiple nodes, Eq. (19) yields a set of S equations, one for each node location. Assuming
the excitation frequency o; the oscillator stiffnesses ki; the attachment locations xi

a; and the
excitation location xf ; all are specified, these S equations lead to a set of non-linear algebraic
equations in the masses, mi; which can be solved simultaneously so that the specified xr

n are nodes.
Because the S equations are generally totally independent, the solution to these simultaneous non-
linear algebraic equations can often be difficult to obtain. The S equations define the zero
contours of S independent functions, and the solution of the problem corresponds to the points of
intersection of these contour curves. The S curves may have many points of intersection, or they
may have none at all. Unlike a set of linear equations, where S independent equations are
guaranteed to have S unique solutions, there is no corresponding statement for non-linear
functions that specifies how many, if any, intersection points there are. To solve such problems, an
estimation of the location of a solution can be first established by means of simultaneous contour
plots of the functions. Once its approximate location is known (assuming there is a solution), very
efficient numerical methods can then be used to converge to the desired result.
The MATLAB routine fsolve is employed in this paper to obtain the solution of a system of

non-linear algebraic equations using a quasi-Newton method. For a set of initial guesses, if fsolve
does not converge to a solution, then fsolve is ran again with a different set of starting values until
a solution is obtained. The proposed technique of solving for the masses in order to impose nodes
at xr

n is very robust. In all of the cases considered by this author, fsolve successfully converged to a
set of theoretically feasible solutions. Finally, if there is no set of mi that satisfy the set of S non-
linear algebraic equations, then one can change either one or more of the oscillator stiffnesses, ki;
or one or more of the attachment locations, xi

a; to obtain the required lumped masses mi so that
nodes at xi

n can be induced for the given xf and o:

3. Results

Because the assumed-modes method was used to formulate the equations of motion, the
proposed procedures can be easily implemented to impose a single node or multiple nodes for any
arbitrarily supported elastic structure during harmonic excitations. Without any loss of generality,
a simply supported and a fixed-free uniform Euler–Bernoulli beam will be considered.
When the Euler–Bernoulli beam is uniform and simply supported, its normalized (with respect

to the mass per unit length, r; of the beam) eigenfunctions are given by

fiðxÞ ¼

ffiffiffiffiffiffi
2

rL

s
sin

ipx

L
ð25Þ

such that the generalized masses and stiffnesses of the beam become

Mi ¼ 1 and Ki ¼ ðipÞ4EI=ðrL4Þ; ð26Þ

where E is Young’s modulus, I is the moment of inertia of the cross-section of the beam. When
the Euler–Bernoulli beam is uniform and fixed-free, its normalized eigenfunctions are

fiðxÞ ¼
1ffiffiffiffiffiffi
rL

p cos bix � cosh bix þ
sin biL � sinh biL

cos biL þ cosh biL
ðsin bix � sinh bixÞ

� �
ð27Þ
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such that the generalized masses and stiffnesses of the beam are

Mi ¼ 1 and Ki ¼ ðbiLÞ
4EI=ðrL4Þ: ð28Þ

where biL satisfies the transcendental equation

cos biL cosh biL ¼ �1: ð29Þ

The assumed-modes method was used in the analysis. To validate this approximate approach, the
natural frequencies of Fig. 1 are computed exactly, and the results are compared with those
obtained using the approximate scheme, for the case of a uniform cantilever beam carrying one
undamped oscillator. Using the assumed-modes method, the approximate natural frequencies
correspond to the zeros of the characteristic determinant of the coefficient matrix of %Z of Eq. (16).
Table 1 lists the first six natural frequencies of the system, for m ¼ 0:1rL; k ¼ 0:75EI=L3 and
xa ¼ 0:88L: Note the excellent agreement between the exact and assumed-modes results for N ¼
15 (the number of component modes used in the assumed-modes expansion).
To illustrate the proposed approach of imposing a single node or multiple nodes during

harmonic excitations, cases where the node and attachment locations are collocated and cases
where they are not collocated will be thoroughly analyzed. In the following numerical examples,
N ¼ 15 to ensure the convergence of all the numerical results. In addition, the MATLAB routine
fsolve will be used to find the required masses in order to impose nodes when the attachment and
the node locations are not collocated. Finally, a few words regarding the excitation location xf

and the attachment location xa are warranted. If xa ¼ xf ; then the elastic structure can be made to
remain motionless as long as the oscillator parameters satisfy k ¼ mo2: In this case, the oscillator
behaves as a simple undamped vibration absorber. Thus, in the subsequent analysis, only the
more interesting cases of xaaxf will be investigated.

3.1. Oscillators and node locations are collocated

Consider a uniform simply supported Euler–Bernoulli beam of length L: For a given
application, it is wished that a node be imposed at xn ¼ 0:31L; for a concentrated harmonic force
of amplitude F ; an excitation frequency of o ¼ 42

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

p
; and an excitation location of

xf ¼ 0:87L: Fig. 2 shows the steady state lateral displacement of the beam. The solid curve
corresponds to the deformed shape of the beam with an oscillator attached at xa ¼ 0:31L; whose
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Table 1

The first six natural frequencies of a uniform cantilever Euler–Bernoulli beam carrying one undamped oscillator, of

mass m ¼ 0:1rL and stiffness k ¼ 0:75 EI=L3; at 0:88L: The natural frequencies are non-dimensionalized by dividing byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

p
Natural frequency Exact Assumed modes ðN ¼ 15Þ

o1 0.238798E+01 0.238798E+01

o2 0.402981E+01 0.402981E+01

o3 0.220473E+02 0.220473E+02

o4 0.616974E+02 0.616974E+02

o5 0.120903E+03 0.120903E+03

o6 0.199861E+03 0.199861E+03
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spring–mass parameters are chosen such that k ¼ mo2: The dotted line corresponds to the
deformed shape of the beam with no oscillator, and the horizontal line represents the
configuration of the undeformed beam. Because the excitation frequency is in the vicinity of
the second natural frequency of a uniform simply supported beam, the deformed shape of the
beam with no oscillator resembles its second mode shape. Note that by attaching an oscillator
with a properly chosen set of system parameters, its attachment location remains stationary, and
its steady state response is substantially suppressed compared to the beam with no spring–mass
attachment.
Consider again a simply supported beam. It is now desired that two nodes be imposed, at

x1
n ¼ 0:2L and x2

n ¼ 0:3L; for o ¼ 57
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

p
and xf ¼ 0:87L: Fig. 3 shows the steady state

lateral displacement of the beam. Note that by attaching two oscillators (whose system parameters
are given by kr ¼ mro2) at the desired node locations, the attachment points become nodes.
Moreover, observe that the beam in the region between 0 and 0:3L has nearly zero amplitudes.
Thus, by placing the oscillators at appropriate locations, it is possible to specify a region of nearly
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Fig. 2. The steady state deformed shapes of a uniform simply supported Euler–Bernoulli beam with (solid line) and

without (dotted line) an oscillator attachment. The horizontal line represents the configuration of the undeformed

beam. The system parameters are o ¼ 42
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

p
; xf ¼ 0:87L and xa ¼ 0:31L: The attachment and node locations

are collocated.

Fig. 3. The steady state deformed shapes of a uniform simply supported Euler–Bernoulli beam with (solid line) and

without (dotted line) oscillator attachments. The system parameters are o ¼ 57
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

p
; xf ¼ 0:87L; x1

a ¼ 0:2L and

x2
a ¼ 0:3L: The attachment and node locations are collocated.
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zero displacements for a particular driving frequency, effectively quenching vibration in that
segment of the beam.
Fig. 4 shows the steady state lateral displacement of a simply supported beam under harmonic

excitation, with the same o and xf as those of Fig. 3, except now with three oscillators attached at
x1

a ¼ 0:2L; x2
a ¼ 0:3L and x3

a ¼ 0:4L: For this case, note that the beam amplitude in the region
between 0 and 0:4L remains nearly stationary, despite the fact that the same beam with no
absorbers experiences substantial deflection within that region. This is clearly beneficial because it
would allow sensitive instruments to be placed in the region where there is little or no vibration.
Compared with the results of Fig. 3, note that by attaching an additional oscillator at 0:4L; the
region of nearly zero displacements is increased by approximately a third.
Consider now a uniform fixed-free Euler–Bernoulli beam. A localized harmonic force of

frequency o ¼ 31
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

p
is applied at xf ¼ 0:77L along the beam. Fig. 5 shows the steady state

lateral displacement of the cantilevered beam. Note that when the beam with no oscillator is
subjected to the prescribed harmonic excitation, its free end exhibits the largest lateral displacement.
The tip of the same beam with an oscillator (whose spring–mass parameters satisfy k ¼ mo2)

ARTICLE IN PRESS

Fig. 4. The steady state deformed shapes of a uniform simply supported Euler–Bernoulli beam with (solid line) and

without (dotted line) oscillator attachments. The system parameters are o ¼ 57
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

p
; xf ¼ 0:87L; x1

a ¼ 0:2L

x2
a ¼ 0:3L and x3

a ¼ 0:4L: The attachment and node locations are collocated.

Fig. 5. The steady state deformed shapes of a uniform cantilever Euler–Bernoulli beam with (solid line) and without

(dotted line) oscillator attachment. The system parameters are o ¼ 31
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

p
; xf ¼ 0:77L and xa ¼ 1:0L: The

attachment and node locations are collocated.
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attached at xa ¼ 1:0L; however, becomes a node, even though its tip is not constrained. This has
practical implications because by attaching a properly tuned oscillator anywhere along the beam, the
attachment location can be made to remain completely stationary without using any rigid supports.
Fig. 6 illustrates the steady state deformed shape of a uniform cantilever beam subjected to a

localized harmonic force applied at xf ¼ 0:87L; with a forcing frequency of o ¼ 57
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

p
:

Note that by attaching two properly tuned oscillators at x1
a ¼ 0:4L and x2

a ¼ 0:5L; nodes are
induced at the same locations, which consequently leads to very little vibration in the region
between 0 and 0:5L: When an additional oscillator is attached at 0:6L; the region of nearly zero
displacements is extended to 0:6L; as shown in Fig. 7.

3.2. Oscillators and node locations are not collocated

Consider a simply supported beam, with a concentrated harmonic force applied at xf ¼ 0:77L;
with a forcing frequency of o ¼ 57

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

p
: For a given application, it is desired to have a
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Fig. 6. The steady state deformed shapes of a uniform cantilever Euler–Bernoulli beam with (solid line) and without

(dotted line) oscillator attachments. The system parameters are o ¼ 57
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

p
; xf ¼ 0:87L; x1

a ¼ 0:4L and x2
a ¼

0:5L: The attachment and node locations are collocated.

Fig. 7. The steady state deformed shapes of a uniform cantilever Euler–Bernoulli beam with (solid line) and without

(dotted line) oscillator attachments. The system parameters are o ¼ 57
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

p
; xf ¼ 0:87L; x1

a ¼ 0:4L; x2
a ¼ 0:5L

and x3
a ¼ 0:6L: The attachment and node locations are collocated.
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node at xn ¼ 0:31L: However, due to space constraint, an oscillator cannot be attached at that
location but at some other point, say xa ¼ 0:65L: In this case, Eqs. (21)–(24) can be used to
obtained the required spring–mass parameters in order to induce a node. For k ¼ 20EI=L3;
Eq. (21) gives m ¼ 6:221� 10�3rL: Fig. 8 shows the deformed shape of the uniform simply
supported beam. Note that deformed shape of the beam carrying the oscillator has a node at
exactly 0:31L; and the region between 0 and 0:31L experiences substantially less vibration
comparing to the beam with no oscillator.
Fig. 9 shows the required mass parameter as a function of the attachment location, xa; for the

system and the xf ; xn; k and o values of Fig. 8. Because the beam is simply supported, the possible
attachment locations are defined in the region 0oxaoL: Knowing the desired attachment
location, this figure can be used as a design plot to select the required mass parameter in order
to induce a node at xn: If the attachment location is moved to 0:72L (closer to xf ), then for
k ¼ 20EI=L3; Eq. (21) yields m ¼ 6:187� 10�3rL: For this case, the vibration of the beam
with the oscillator attachment is substantially suppressed in the region between 0:4L and 1:0L
(see Fig. 10) compared to the case where xa ¼ 0:65L (see Fig. 8).
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Fig. 8. The steady state deformed shapes of a uniform simply supported Euler–Bernoulli beam with (solid line) and

without (dotted line) oscillator attachments. The system parameters are o ¼ 57
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

p
; xf ¼ 0:77L; xa ¼ 0:65L;

xn ¼ 0:31L; k ¼ 20EI=L3 and m ¼ 6:221� 10�3rL: The attachment and node locations are not collocated.

Fig. 9. The design plot of the required mass parameter m=ðrLÞ versus the attachment location xa=L; for the same o; xf ;
xn and k values of the simply supported beam of Fig. 8.
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A simply supported beam is excited by a concentrated harmonic force at xf ¼ 0:87L; with
o ¼ 57

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

p
: For a specific application, a region of zero displacements is desired between

0:2L and 0:3L: To accomplish this, two oscillators are attached at x1
a ¼ 0:56L and x2

a ¼ 0:71L for
the purpose of inducing nodes at x1

n ¼ 0:2L and x2
n ¼ 0:3L: For k1 ¼ 55EI=L3 and k2 ¼ 75EI=L3;

solving the two equations of Eq. (19) simultaneously using MATLAB routine fsolve gives
m1 ¼ 1:692� 10�2rL and m2 ¼ 2:333� 10�2rL: Fig. 11 shows the steady state response of the
simply supported beam carrying two oscillators (with the above set of system parameters) at the
specified attachment locations. Note that the region of the beam between 0 and 0:6L is practically
motionless, thus satisfying the design objectives.
Fig. 12 shows the steady state lateral displacement of a uniform fixed-free beam when it is being

excited harmonically at xf ¼ 0:77L with o ¼ 21
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

p
: A node is desired at xn ¼ 1:0L; and

the oscillator is attached at xa ¼ 0:62L: For k ¼ 20EI=L3; Eq. (21) gives m ¼ 2:999� 10�2rL:
Note that by attaching a spring–mass system with a set of properly chosen parameters, a node can
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Fig. 10. The steady state deformed shapes of a uniform simply supported Euler–Bernoulli beam with (solid line) and

without (dotted line) oscillator attachment. The system parameters are o ¼ 57
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

p
; xf ¼ 0:77L; xa ¼ 0:72L;

xn ¼ 0:31L; k ¼ 20EI=L3 and m ¼ 6:187� 10�3rL: The attachment and node locations are not collocated.

Fig. 11. The steady state deformed shapes of a uniform simply supported Euler–Bernoulli beam with (solid line) and

without (dotted line) oscillator attachments. The system parameters are o ¼ 57
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

p
; xf ¼ 0:87L; x1

a ¼ 0:56L;
x2

a ¼ 0:71L; x1
n ¼ 0:2L; x2

n ¼ 0:3L; k1 ¼ 55EI=L3; k2 ¼ 75EI=L3; m1 ¼ 1:692� 10�2rL and m2 ¼ 2:333� 10�2rL: The
attachment and node locations are not collocated.
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be induced at the tip of a fixed-free beam. Fig. 13 shows the design plot of m versus xa for the
system of Fig. 12 and the prescribed xf ; xn; k and o: Because the beam is fixed at one end, the
range of possible attachment locations is given by 0oxapL:
Fig. 14 shows the steady state deformed shape of a uniform cantilever beam excited

harmonically at xf ¼ 1:0L with o ¼ 75
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

p
: Nodes are desired at 0:6L and 1:0L; and

oscillators are attached at x1
a ¼ 0:64L and x2

a ¼ 0:83L: For k1 ¼ 75EI=L3 and k2 ¼ 50EI=L3;
Eq. (19) returns m1 ¼ 1:343� 10�2rL and m2 ¼ 8:099� 10�3rL: Note that for the chosen set of
system parameters, the displacements at 0:6L and 1:0L indeed become zero, even though the
localized force is applied at xf ¼ 1:0L:
A simple and efficient approach has been developed to solve the inverse problem of imposing

nodes at multiple locations along any arbitrarily supported elastic structure that is subjected to a
localized harmonic excitation. This has practical benefits because it allows certain points along the
structure to remain stationary without using any rigid supports, and it enables certain regions of
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Fig. 12. The steady state deformed shapes of a uniform cantilever Euler–Bernoulli beam with (solid line) and without

(dotted line) oscillator attachment. The system parameters are o ¼ 21
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

p
; xf ¼ 0:77L; xa ¼ 0:62L; xn ¼ 1:0L;

k ¼ 20EI=L3 and m ¼ 2:999� 10�2rL: The attachment and node locations are not collocated.

Fig. 13. The design plot of the required mass parameter m=ðrLÞ versus the attachment location xa=L; for the same o;
xf ; xn and k values of the cantilever beam of Fig. 12.
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the structure to undergo very small deflections, thereby suppressing vibration in those sections.
Finally, another important design specification is governed by the vibration of the absorber
masses. If the vibration amplitudes of these masses approach very high values, then theoretically
feasible solutions would be impossible to apply in practice, and it would be necessary to introduce
dampers to the vibration absorbers. This interesting problem of imposing the additional
constraint of maximum vibration amplitude of the masses will be left for a future research project.

4. Conclusions

Elastically mounted masses can be used to impose a single or multiple nodes on any elastic
structure during harmonic excitations. When the parameters of the sprung masses are properly
chosen, nodes can always be induced at the attachment locations for any excitation frequency and
excitation location. When the attachment and the node locations are not collocated, it is only
possible to induce a node or multiple nodes at certain locations along the structure. In addition, if
the node locations are properly selected, a region of nearly zero amplitudes can be imposed along
the elastic structure for a given localized harmonic force without using any rigid supports,
effectively quenching vibration in that segment of the structure. A detailed procedure to assist in
the selection of the attached spring–mass systems was outlined, and numerical experiments were
performed to validate the utility of the proposed scheme of imposing a single or multiple nodes
during harmonic excitations for the collocated and non-collocated cases.

Appendix A. Required oscillator mass

Consider two matrices ½A� and ½B� that are related as shown:

½A� ¼ ½B� þ
%
u
%
vT:
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Fig. 14. The steady state deformed shapes of a uniform cantilever Euler–Bernoulli beam with (solid line) and without

(dotted line) oscillator attachments. The system parameters are o ¼ 75
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

p
; xf ¼ 1:0L; x1

a ¼ 0:64L; x2
a ¼ 0:83L;

x1
n ¼ 0:6L; x2

n ¼ 1:0L; k1 ¼ 75EI=L3; k2 ¼ 50EI=L3; m1 ¼ 1:343� 10�2rL and m2 ¼ 8:099� 10�3rL: The attachment

and node locations are not collocated.
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If the inverse of ½B� is known, then the inverse of ½A� can be obtained by using the following
Sherman–Morrison formula [8]:

½A��1 ¼ ½B��1 �
½B��1

%
u
%
vT½B��1

1þ
%
vT½B��1

%
u
:

The above result can be used to invert expression (20). Letting

½B� ¼ ½Kd � � o2½Md �;
%
u ¼ a

%
fðxaÞ;

where

a ¼
kmo2

mo2 � k

and

%
vT ¼

%
fTðxaÞ;

the required inverse can be readily obtained in closed form. Expanding the triple product of
Eq. (20) yields

c1 �
a

1þ c3a
c2 ¼ 0;

where and c1 to c3 are given by Eqs. (22)–(24), respectively. Multiplying the above equation
through by 1þ c3a and solving for m; Eq. (21) is obtained.
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